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ABSTRACT: The electrophile−electrophile cross-coupling of
carboxylic acid derivatives and alkylpyridinium salts via C−N
bond cleavage is developed. The method is distinguished by its
simplicity and steers us through a variety of functionalized ketones
in good to excellent yields. Besides acid chlorides, carboxylic acids
were also employed as acylating agents, which enabled us to
incorporate acid-sensitive functional groups such as MOM, BOC,
and acetal. Control experiments with TEMPO revealed a radical
pathway.

The ubiquity of ketones in pharmaceutical agents, natural
products, agrochemicals, and synthetic applications1−4

has led to the invention of various elegant strategies for
accommodating this intrinsic group. A convergent acylation
that utilizes carboxylic acid derivatives with preformed
organometallic reagents is commonly found in the liter-
ature.3−5 A further improvement to this acylation was achieved
using transition metals, in which less reactive organometallic
reagents such as organozinc,6 organomagnesium,5,7 organotin,8

organoboron,9,10 and organosilane11 were successfully utilized.
Despite these advancements, the instability and limited
availability of the organometallic reagents drive the researchers
to find potent alternative methods. Moreover, the alkyl
organometallic reagents consisting of a β-leaving group are
more prone to undergoing elimination.12

The electrophile−electrophile cross-coupling reactions are
an attractive alternative to classical cross-coupling reactions
(Scheme 1a). Although the strategy was reported a few
decades ago,2,13,14 it was not developed further until recently
when Weix et al., Gong et al., and others showed that the alkyl
halides could be cross-coupled with various electrophiles in the
presence of nickel,15−21 cobalt,22 palladium,13 and iron
catalysts.23 In this context, acylations via a cross electro-
phile−electrophile coupling reaction to afford ketone were also
reported (Scheme 1a). Carboxylic acids10,21,24 and their
derivatives, including acyl halides,2,13,18−20 anhydrides,21,25

and esters,14,19 were utilized as the source of the acylating
agent. Mukaiyama et al. showed that the pyridyl ester could be
coupled with alkyl iodides.14 In the same year, Fujisawa et al.
reported a palladium-mediated acylation of benzyl bromide.13

The direct cross-coupling of carboxylic acids with alkyl halides
has also been recently reported wherein the anhydrides were
prepared in situ from carboxylic acids and Boc2O.

21,24

Despite these significant advancements in transition metal-
mediated electrophile−electrophile cross-coupling reactions
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Scheme 1. Electrophile−Electrophile Cross-Coupling
Reactions
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(Scheme 1b), the acylation remains confined to the use of alkyl
halides. However, the use of amines as an electrophilic
coupling partner in transition metal-mediated acylation is
unknown (Scheme 1c) despite its widespread availability.26−28

Activation of kinetically inert C−N bonds in cross-coupling
reactions is notoriously difficult, and a significant effort has
been made to activate C−N bonds. Transition metal-mediated
cleavage of C(sp2)−N and activated C(sp3)−N (strained,
allylic, and benzylic) bonds is reported.29 Recently, Wat-
son,16,26,30 Glorius,31 Aggarwal,32 and Rueping15 et al. reported
the activation of an unactivated C(sp3)−N bond by converting
various amines into Katritzky pyridinium salts.33

Perceiving the advantage of this approach and in accordance
with our interest in nickel-mediated cross-coupling reactions,34

herein, we demonstrate the feasibility of electrophile−electro-
phile cross-coupling reaction between amines and acid
chlorides as well as carboxylic acids by the synthesis of vital
molecules (Scheme1c) in various facets of chemistry.
We commenced our study with acid chloride 2a, which was

readily prepared from the corresponding carboxylic acid 1a.
The pyridinium salt 4a was prepared from benzyl amine in two
steps. The optimized condition requires the use of NiBr2·bpy
(10 mol %), 1.8 equiv of Mn, and 2.0 equiv of acid chloride 2a
in a 95:5 CH3CN/DMA mixture at room temperature. Under
this ideal condition, we were delighted to obtain the ketone 5a,
a photochromic dye, in 92% isolated yield (Table 1, entry 1).
Nickel complexes NiBr2·bpy

35 and NiBr2·bpy2
36 offered

excellent catalytic activity with similar yields, stressing that
the coordination environment around the nickel center did not
alter the reaction efficiency (entries 1 and 2, respectively),

whereas NiI2 and Ni(acac)2 yielded moderate results (entries 3
and 4, respectively) with the significant formation of byproduct
6a. In the absence of a bipyridine ligand (entry 5), a substantial
drop in the level of acylation (42% yield) was observed,
suggesting the crucial role of a bipyridine ligand. The in situ-
generated NiBr2·bpy from the trihydrated nickel(II) bromide
offered a slightly lower yield (entry 6), whereas the in situ-
generated NiCl2·bpy from nickel(II) chloride offered a poor
yield with significant formation of byproduct 6a (entry 7).
Control experiments reveal that NiBr2·bpy and Mn are
essential (entries 8 and 10, respectively), and a detrimental
effect was observed when Mn was replaced with Zn (entry 9),
demonstrating the potential role of Mn as a reductant to
generate low-valent nickel and/or an alkyl radical intermediate
from pyridinium salt. Decreasing the amount of either Mn or
acid chloride decreased the yield (entry 11 or 12, respectively),
presumably due to the partial hydrolysis of acid chloride. A
brief screening of solvents showed that the cosolvent system
CH3CN and DMA was the best in terms of chemical yield for
acylation (entries 13 and 14, respectively), and a 95:5 solvent
ratio (CH3CN:DMA) was optimal (see the Supporting
Information). Remarkably, 5 mol % NiBr2·bpy offered a yield
that was slightly lower than that of 10 mol % NiBr2·bpy (entry
15). A further decrease in catalyst load to 1 mol % reduced the
yield of acylated product 5a (entry 16). Because an anhydride
can also be used as an acylating agent,21,25 we employed the
purified anhydride 3a in place of acid chloride 2a and obtained
5a in 72% yield (entry 17). It is also necessary to purify the
acid chloride 2a prior to the reaction, or the undistilled crude
acid chloride 2a generated by the reaction of either oxalyl
chloride or thionyl chloride offered moderate yields (entry 18
or 19, respectively). The reaction was also carried out with 1
mmol of 4a and produced 5a in 95% isolated yield with 10 mol
% nickel catalyst and 87% isolated yield with 5 mol % nickel
catalyst.
Having an optimized condition in hand, we further

expanded the substrate scope, and the results are summarized
in Table 2. A broad range of acid chlorides (10 in total) were
conveniently prepared from the corresponding carboxylic
acids, and the pyridinium salts (12 in total) were made from
the corresponding amines via pyrylium salts (see the
Supporting Information). Although the purified acid chloride
2a offered a yield higher than that of the undistilled acid
chloride (Table 1), some of the acid chlorides in Table 2 were
utilized as a crude because they are prone to undergo
decomposition during distillation. A range of acid chlorides,
including the primary 2a−e and secondary alkyl acid chlorides
2f−i, smoothly underwent cross-coupling reactions with
various pyridinium salts 4 to obtain the cross-coupled product
in good to excellent yields. The sterically hindered tertiary alkyl
acid chloride 2j offered the cross-coupled product 5aa in
moderate yield. Aryl carboxylic acid chloride 2i was also
compatible to offer the coupled product 5ae in 54% yield and
can also be extended to various aryl acid chlorides, which is not
within the scope of this paper. Strikingly, a substrate bearing
alkyl bromide was also well tolerated, although the alkyl halides
are also known to undergo cross-coupling reactions with acid
halides.37 The alkyl acid chloride 2e underwent chemoselective
cross-coupling reaction to afford the acylated products 5b and
5c in 96% and 63% yields, respectively. Various functional
groups, including fluoride 2i, alkene 4e, ether 2b, and carbonyl
4f, were undeterred. The silyl-protected alcohol 2c was also
compatible and underwent smooth cross-coupling to afford

Table 1. Optimization of the Reaction Conditionsa

entry deviation from standard conditions 6a (%)b 5a (%)b

1 none NDg 93, 92c

2 NiBr2·bpy2 instead of NiBr2·bpy 5 90
3 NiI2·bpy 18 55d

4 Ni(acac)2 + bpy 42 34
5 NiBr2 in the absence of bpy 5 42d

6 in situ NiBr2·3H2O + bpy NDg 89
7 in situ NiCl2 + bpy 27 20d

8 without NiBr2·bpy NDg 0
9 Zn instead of Mn 3 56d

10 no Mn NDg 0d

11 1 equiv of 2a 8 74d

12 1.2 equiv of Mn trace 49d

13 CH3CN alone NDg 48,d 65d,e

14 DMA alone 6 67
15 5 mol % NiBr2·bpy 2 89
16 1 mol % NiBr2·bpy NDg 60f

17 anhydride instead of acid chloride NDg 72
18 in situ 2a from oxalyl chloride 3 60
19 in situ 2a from thionyl chloride NDg 32

aReaction conditions: 0.295 mmol of 4a, 0.59 mmol of 2a, 0.0295
mmol of NiBr2·bpy, 0.53 mmol of Mn, 0.1 M CH3CN/DMA solution
(95:5). bYields determined by 1H NMR using 1,3,5-trimethoxyben-
zene as an internal standard. cIsolated yield. dLeftover 4a was seen in
TLC. eAfter 20 h. fCarried out with 2.06 mmol of 4a. gNot detected.
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product 5ab in 60% isolated yield. This provides an
opportunity for further functionalization of the cross-coupled
products. Given the importance of amino acids across various
disciplines and their greater accessibility, glycine ester 4f was
successfully cross-coupled into the corresponding acylated
product 5ac. Ketones 5h, 5s, and 5ae were reduced to the
corresponding alcohols with NaBH4 for successful isolation
from the otherwise inseparable byproduct (triphenylpyridine).
We also obtained 5p, a naturally occurring essential oil in
Aniseed,38 and 5v, a metabolite, in high yields.39 It is
noteworthy to mention that 5af, a derivative of antiarrhythmic
drug Mexiletine, was also prepared in 24% yield using this
method.
Despite the success of acid chlorides as an acylating source,

acid-sensitive protecting groups such as MOM, BOC, and
acetals were not compatible in the synthesis of acid chlorides.
Encouraged by the literature findings,21,24 we anticipated that
the carboxylic acids could be directly utilized via the in situ
generation of anhydrides. Moreover, if successful, the acid-
sensitive functional groups could be incorporated to diversify
the functional group tolerance. We carried out a detailed
investigation to optimize the in situ generation of anhydride
using Boc2O and MgCl2 in either THF or CH3CN (see the

Supporting Information).40 The subsequent cross-coupling
reaction proceeded smoothly in the presence of NiBr2·bpy (10
mol %) and Mn (1.8 equiv) to afford the ketones 5w and 5a in
76% and 80% yields, respectively. We then subjected the
carboxylic acids, containing acid-sensitive protecting groups,
including MOM, BOC, OTs, and acetal, to the optimized
reaction condition and obtained the cross-coupled products in
poor to moderate yields as shown in Table 3. These results can

be attributed to the formation of byproducts (biphenyl ethane
and tert-butyl ester of the carboxylic acids) and the unstable
nature of these acid-sensitive substrates.
In accordance with the literature, we expected the

generation of an alkyl radical intermediate from pyridinium
salt.15,30,32 Hence, we introduced TEMPO under the
optimized reaction condition and observed the complete
inhibition of the reaction with consequent formation of
TEMPO adduct 5ao, which was confirmed by 1H NMR (see
the Supporting Information) and MS analysis (Scheme 2). The
reaction was also inhibited when the reaction was carried out
in the presence of radical inhibitor 1-chloro-2,4-dinitroben-
zene.
It has been proposed in the literature that the nickel-

catalyzed cross-coupling reactions may follow different path-

Table 2. Scope of Carboxylic Acid Chlorides as an Acylating
Sourcea

aReaction conditions: 1 equiv of 4, 2 equiv of 2, 10 mol % NiBr2·bpy,
1.8 equiv of Mn, 0.1 M CH3CN/DMA solution (95:5), 6−8 h, rt,
isolated yield. bReduced to the corresponding alcohol using NaBH4
(3 equiv). cWith 1.4 equiv of 2c. dCommerical. Acid chlorides 2a, 2b,
2d, and 2i were purified by distillation, and 2e, 2g, and 2h were used
as crude acid chloride.

Table 3. Scope of Carboxylic Acids as an Acylating Sourcea

aReaction conditions: 0.885 mmol of 2 (acid), 0.294 mmol of MgCl2,
1.03 mmol of Boc2O, and 0.9 mL of CH3CN (1 M) in step i. In step
ii, 0.295 mmol of 4, 0.0295 mmol of NiBr2·bpy, 0.53 mmol of Mn, 1.9
mL of CH3CN, and 0.15 mL of DMA were added (overall 0.1 M).
bYields were determined by 1H NMR using 1,3,5-trimethoxybenzene
as an internal standard, and 5a was synthesized using THF instead of
CH3CN.

Scheme 2. Radical Trap Experiment with TEMPO
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ways rather than a universal catalytic cycle. Although we are
working on a dedicated mechanistic study to identify the actual
intermediates and mechanistic pathway (Figure 1), we present

here two possible mechanistic pathways based on the
preceding literature: (i) sequential reduction and (ii) radical
chain process. It has been proposed that the exposure of
Ni(II)X2 to Zn or Mn will lead to the low-valent nickel [either
Ni(0) or Ni(I)];15,17a,41,42 subsequently, it can follow two
different mechanistic pathways. In sequential reduction, the
low-valent nickel can undergo oxidative addition with acid
chloride and resultant intermediate II could be reduced to
intermediate III, which will in turn reduce the pyridinium salt
4 to intermediate V in a stepwise manner. Reductive
elimination of intermediate V and further reduction with Mn
could regenerate the active nickel species I. In the case of a
radical chain process,17a,42,43 the low-valent nickel species I
may reduce pyridinium salt 4 to generate the intermediate VII,
and subsequent oxidative addition with acid chloride will lead
to the intermediate VIII, which in turn will combine with an
alkyl radical to generate the intermediate IX. Subsequent
reductive elimination followed by the Mn-mediated reduction
could regenerate the active nickel species.
In summary, we have presented a nickel-mediated acylation

of pyridinium salt for the first time. A broad range of acid
chlorides, including sterically hindered, and pyridinium salts
with varied functional groups underwent cross-coupling
reactions to offer the acylated products in good yields. This
protocol accommodates inexpensive bipyridine ligand, requires
no additives, and proceeds at ambient temperature. We also
showed that the carboxylic acids can be used directly in place
of acid chloride to incorporate acid-sensitive functional groups,
although the yields of these reactions ranged from poor to
high. The presence of the radical intermediate is confirmed by
the identification of the TEMPO adduct through NMR and
MS analysis. We have presented two possible mechanistic
pathways, namely, sequential reduction and radical chain
process for the acylation via C−N bond cleavage. The process
of finding the actual intermediates and mechanistic pathway is
currently underway in our laboratory.
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